Single-crystal diamond nanomechanical resonators with quality factors exceeding one million.
نویسندگان
چکیده
Diamond has gained a reputation as a uniquely versatile material, yet one that is intricate to grow and process. Resonating nanostructures made of single-crystal diamond are expected to possess excellent mechanical properties, including high-quality factors and low dissipation. Here we demonstrate batch fabrication and mechanical measurements of single-crystal diamond cantilevers with thickness down to 85 nm, thickness uniformity better than 20 nm and lateral dimensions up to 240 μm. Quality factors exceeding one million are found at room temperature, surpassing those of state-of-the-art single-crystal silicon cantilevers of similar dimensions by roughly an order of magnitude. The corresponding thermal force noise for the best cantilevers is ~5·10(-19) N Hz(-1/2) at millikelvin temperatures. Single-crystal diamond could thus directly improve existing force and mass sensors by a simple substitution of resonator material. Presented methods are easily adapted for fabrication of nanoelectromechanical systems, optomechanical resonators or nanophotonic devices that may lead to new applications in classical and quantum science.
منابع مشابه
Nanofluidics of Single-Crystal Diamond Nanomechanical Resonators.
Single-crystal diamond nanomechanical resonators are being developed for countless applications. A number of these applications require that the resonator be operated in a fluid, that is, a gas or a liquid. Here, we investigate the fluid dynamics of single-crystal diamond nanomechanical resonators in the form of nanocantilevers. First, we measure the pressure-dependent dissipation of diamond na...
متن کاملHigh quality-factor optical nanocavities in bulk single-crystal diamond.
Single-crystal diamond, with its unique optical, mechanical and thermal properties, has emerged as a promising material with applications in classical and quantum optics. However, the lack of heteroepitaxial growth and scalable fabrication techniques remains the major limiting factors preventing more wide-spread development and application of diamond photonics. In this work, we overcome this di...
متن کاملUltimate limits to inertial mass sensing based upon nanoelectromechanical systems
Nanomechanical resonators can now be realized that achieve fundamental resonance frequencies exceeding 1 GHz, with quality factors ~Q! in the range 10<Q<10. The minuscule active masses of these devices, in conjunction with their high Qs, translate into unprecedented inertial mass sensitivities. This makes them natural candidates for a variety of mass sensing applications. Here we evaluate the u...
متن کاملIntegrated high-quality factor optical resonators in diamond.
The realization of an integrated diamond photonic platform, based on a thin single crystal diamond film on top of a silicon dioxide/silicon substrate, is reported. Using this approach, we demonstrate high-quality factor single crystal diamond race-track resonators, operating at near-infrared wavelengths (1550 nm). The devices are integrated with low-loss diamond waveguides terminated with polym...
متن کاملQuality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 5 شماره
صفحات -
تاریخ انتشار 2014